Anomaly Detection Example

This is a simple example of anomaly detection using Python and the scikit-learn library with the Isolation Forest algorithm.

Anomaly Detection Overview

Anomaly detection is a machine learning technique that identifies instances in a dataset that deviate significantly from the norm or expected behavior. It is commonly used in various domains, including fraud detection, network security, and equipment monitoring. Anomaly detection models aim to distinguish normal patterns from unusual patterns in the data.

Key concepts of anomaly detection:

Isolation Forest is an effective algorithm for anomaly detection, especially in high-dimensional datasets.

Python Source Code:

# Import necessary libraries
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import IsolationForest

# Generate synthetic data with outliers
np.random.seed(42)
normal_data = np.random.normal(loc=0, scale=1, size=(1000, 2))
outliers = np.random.normal(loc=10, scale=1, size=(50, 2))
data = np.vstack([normal_data, outliers])

# Train an Isolation Forest model
model = IsolationForest(contamination=0.05, random_state=42)
model.fit(data)

# Predict the anomaly scores for each instance
anomaly_scores = model.decision_function(data)

# Plot the data points and highlight anomalies
plt.figure(figsize=(8, 6))
plt.scatter(data[:, 0], data[:, 1], c=anomaly_scores, cmap='viridis', marker='o', edgecolors='k')
plt.colorbar(label='Anomaly Score')
plt.title('Anomaly Detection with Isolation Forest')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()

Explanation: